3.105 \(\int \cot ^3(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx\)

Optimal. Leaf size=151 \[ \frac{23 a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{a}}\right )}{4 d}-\frac{4 \sqrt{2} a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{d}-\frac{a^2 \cot ^2(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 d}-\frac{9 i a^2 \cot (c+d x) \sqrt{a+i a \tan (c+d x)}}{4 d} \]

[Out]

(23*a^(5/2)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[a]])/(4*d) - (4*Sqrt[2]*a^(5/2)*ArcTanh[Sqrt[a + I*a*Tan[c
 + d*x]]/(Sqrt[2]*Sqrt[a])])/d - (((9*I)/4)*a^2*Cot[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]])/d - (a^2*Cot[c + d*x]
^2*Sqrt[a + I*a*Tan[c + d*x]])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.442497, antiderivative size = 151, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.308, Rules used = {3553, 3598, 3600, 3480, 206, 3599, 63, 208} \[ \frac{23 a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{a}}\right )}{4 d}-\frac{4 \sqrt{2} a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{d}-\frac{a^2 \cot ^2(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 d}-\frac{9 i a^2 \cot (c+d x) \sqrt{a+i a \tan (c+d x)}}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^3*(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

(23*a^(5/2)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[a]])/(4*d) - (4*Sqrt[2]*a^(5/2)*ArcTanh[Sqrt[a + I*a*Tan[c
 + d*x]]/(Sqrt[2]*Sqrt[a])])/d - (((9*I)/4)*a^2*Cot[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]])/d - (a^2*Cot[c + d*x]
^2*Sqrt[a + I*a*Tan[c + d*x]])/(2*d)

Rule 3553

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Si
mp[(a^2*(b*c - a*d)*(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1))/(d*f*(b*c + a*d)*(n + 1)), x] +
 Dist[a/(d*(b*c + a*d)*(n + 1)), Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1)*Simp[b*(b*c*(m
- 2) - a*d*(m - 2*n - 4)) + (a*b*c*(m - 2) + b^2*d*(n + 1) - a^2*d*(m + n - 1))*Tan[e + f*x], x], x], x] /; Fr
eeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && LtQ[
n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 3598

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*d - B*c)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(f
*(n + 1)*(c^2 + d^2)), x] - Dist[1/(a*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n
 + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c*m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x],
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[n, -1]

Rule 3600

Int[(((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(A*b + a*B)/(b*c + a*d), Int[(a + b*Tan[e + f*x])^m, x], x] - Dist[(B*c
 - A*d)/(b*c + a*d), Int[((a + b*Tan[e + f*x])^m*(a - b*Tan[e + f*x]))/(c + d*Tan[e + f*x]), x], x] /; FreeQ[{
a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rule 3480

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3599

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*B)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \cot ^3(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx &=-\frac{a^2 \cot ^2(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 d}-\frac{1}{2} \int \cot ^2(c+d x) \sqrt{a+i a \tan (c+d x)} \left (-\frac{9 i a^2}{2}+\frac{7}{2} a^2 \tan (c+d x)\right ) \, dx\\ &=-\frac{9 i a^2 \cot (c+d x) \sqrt{a+i a \tan (c+d x)}}{4 d}-\frac{a^2 \cot ^2(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 d}-\frac{\int \cot (c+d x) \sqrt{a+i a \tan (c+d x)} \left (\frac{23 a^3}{4}+\frac{9}{4} i a^3 \tan (c+d x)\right ) \, dx}{2 a}\\ &=-\frac{9 i a^2 \cot (c+d x) \sqrt{a+i a \tan (c+d x)}}{4 d}-\frac{a^2 \cot ^2(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 d}-\frac{1}{8} (23 a) \int \cot (c+d x) (a-i a \tan (c+d x)) \sqrt{a+i a \tan (c+d x)} \, dx-\left (4 i a^2\right ) \int \sqrt{a+i a \tan (c+d x)} \, dx\\ &=-\frac{9 i a^2 \cot (c+d x) \sqrt{a+i a \tan (c+d x)}}{4 d}-\frac{a^2 \cot ^2(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 d}-\frac{\left (23 a^3\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+i a x}} \, dx,x,\tan (c+d x)\right )}{8 d}-\frac{\left (8 a^3\right ) \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\sqrt{a+i a \tan (c+d x)}\right )}{d}\\ &=-\frac{4 \sqrt{2} a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{d}-\frac{9 i a^2 \cot (c+d x) \sqrt{a+i a \tan (c+d x)}}{4 d}-\frac{a^2 \cot ^2(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 d}+\frac{\left (23 i a^2\right ) \operatorname{Subst}\left (\int \frac{1}{i-\frac{i x^2}{a}} \, dx,x,\sqrt{a+i a \tan (c+d x)}\right )}{4 d}\\ &=\frac{23 a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{a}}\right )}{4 d}-\frac{4 \sqrt{2} a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{d}-\frac{9 i a^2 \cot (c+d x) \sqrt{a+i a \tan (c+d x)}}{4 d}-\frac{a^2 \cot ^2(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 d}\\ \end{align*}

Mathematica [A]  time = 1.84687, size = 182, normalized size = 1.21 \[ -\frac{a^2 e^{-i (c+2 d x)} \sqrt{1+e^{2 i (c+d x)}} \sqrt{\frac{a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}} (\cos (d x)+i \sin (d x)) \left (32 \sinh ^{-1}\left (e^{i (c+d x)}\right )-23 \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{2} e^{i (c+d x)}}{\sqrt{1+e^{2 i (c+d x)}}}\right )+\sqrt{1+e^{2 i (c+d x)}} (2 \cot (c+d x)+9 i) \csc (c+d x)\right )}{4 \sqrt{2} d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^3*(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

-(a^2*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*(32*ArcSinh[E^(I*(
c + d*x))] - 23*Sqrt[2]*ArcTanh[(Sqrt[2]*E^(I*(c + d*x)))/Sqrt[1 + E^((2*I)*(c + d*x))]] + Sqrt[1 + E^((2*I)*(
c + d*x))]*(9*I + 2*Cot[c + d*x])*Csc[c + d*x])*(Cos[d*x] + I*Sin[d*x]))/(4*Sqrt[2]*d*E^(I*(c + 2*d*x)))

________________________________________________________________________________________

Maple [B]  time = 0.323, size = 677, normalized size = 4.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^3*(a+I*a*tan(d*x+c))^(5/2),x)

[Out]

1/8/d*a^2*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*(32*I*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2
*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*2^(1/2)+23*I*(-2*cos(d*x+c)/(cos(d*x+c)
+1))^(1/2)*arctan(1/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^2*sin(d*x+c)-32*(-2*cos(d*x+c)/(cos(d*x+c
)+1))^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*cos(d*x+c)^2*sin(d
*x+c)*2^(1/2)-32*I*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2
))*sin(d*x+c)*2^(1/2)-23*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x
+c)-cos(d*x+c)+1)/sin(d*x+c))*cos(d*x+c)^2*sin(d*x+c)-23*I*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/(-2*c
os(d*x+c)/(cos(d*x+c)+1))^(1/2))*sin(d*x+c)+22*I*cos(d*x+c)^2*sin(d*x+c)+32*2^(1/2)*arctanh(1/2*2^(1/2)*(-2*co
s(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-18*I*sin
(d*x+c)*cos(d*x+c)+23*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*
x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+22*cos(d*x+c)^3-4*cos(d*x+c)^2-18*cos(d*x+c))/(cos(d*x+c)-1)/(I*sin(d*x+
c)+cos(d*x+c)-1)/(cos(d*x+c)+1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.06679, size = 1559, normalized size = 10.32 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/8*(2*sqrt(2)*(11*a^2*e^(4*I*d*x + 4*I*c) + 4*a^2*e^(2*I*d*x + 2*I*c) - 7*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) +
1))*e^(I*d*x + I*c) - 16*sqrt(2)*sqrt(a^5/d^2)*(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*log((sqrt
(2)*sqrt(a^5/d^2)*d*e^(2*I*d*x + 2*I*c) + sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c)
+ 1))*e^(I*d*x + I*c))*e^(-2*I*d*x - 2*I*c)/a^2) + 16*sqrt(2)*sqrt(a^5/d^2)*(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*
I*d*x + 2*I*c) + d)*log(-(sqrt(2)*sqrt(a^5/d^2)*d*e^(2*I*d*x + 2*I*c) - sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2
)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c))*e^(-2*I*d*x - 2*I*c)/a^2) + 23*sqrt(a^5/d^2)*(d*e^(4*I*d*
x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*log((sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*
I*c) + 1))*e^(I*d*x + I*c) + 2*sqrt(a^5/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/a^2) - 23*sqrt(a^5/d^
2)*(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*log((sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(
e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) - 2*sqrt(a^5/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/a^2))/
(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**3*(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \cot \left (d x + c\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)^(5/2)*cot(d*x + c)^3, x)